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Relationship Inference from Trios of Individuals, in the Presence
of Typing Error
Solveig K. Sieberts,1 Ellen M. Wijsman,2,3 and Elizabeth A. Thompson1,2

Departments of 1Statistics and 2Biostatistics and 3Division of Medical Genetics, Department of Medicine, University of Washington, Seattle

Misspecification of relationships and of genotype data can cause problems in linkage analyses based on genome-
scan data. Previous reports have focused on pairwise relationships and a simple error model. This article considers
the increased information available from the joint analysis of trios of individuals, integrating this analysis with an
error model that allows for the most common genotyping errors. Given observed marker phenotypes in a genome
scan, computational methods are outlined both for likelihoods of relationships and for the posterior probabilities
of underlying genotypes. The methods are applied to examples from two real data sets: one has been previously
well analyzed, and, hence, Mendelian inconsistencies have been removed; the other typifies the pedigree and genotype
errors encountered in the initial analyses of a study. It is demonstrated that the coupling of relationship inference
and error detection is quite effective, that the error model is computationally practical, and that data on a third
relative can often clarify relationships.

Introduction

Misspecification of genetic data can cause serious prob-
lems by affecting the inference drawn from linkage stud-
ies. These errors may provide false evidence for linkage
or obscure the true evidence for linkage. In one example,
a study of dyslexia, misreporting of MZ twins as DZ
twins caused false-positive evidence for linkage (Cardon
et al. 1994, 1995). Errors consist of several different
types. The first type is relationship misspecification. This
may occur when the true relationship is unknown by
the reporting parties, which could be caused by alternate
paternity or adoption. Relationship misspecification can
also be caused by sample mishandling on the part of the
researcher, which results in sample switches or dupli-
cations. The second type of error is genotyping error.
Some common sources of genotyping error include mis-
reading of one allele as another, similarly sized allele;
failure of one allele to amplify during PCR amplification,
causing a heterozygote to be typed as a homozygote;
and sample contamination. We include mutation as a
“typing error,” since it has similar effects in data anal-
ysis. Other sources of error in genetic analysis include
misspecification of allele frequencies and of marker-map
distances. In this report, we focus only on genotyping
error and relationship error.
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Genome-screen data can be informative for identifi-
cation of likely genotype errors when the phenotype vi-
olates Mendelian inheritance or causes apparent excess
recombination. Ewen et al. (2000) estimate an error rate
of 0.25% in a standard 10-cM genome screen and a rate
of 12% in a fine-scale–mapping marker set. They esti-
mate that individuals who, because of either preferen-
tial amplification or failure of amplification, have been
falsely classified as homozygotes account for 30% of er-
rors in a 10-cM scan and for as much as 55% of errors
in the fine-scale–mapping marker set. Mistyping due to
microsatellite mutation or call errors accounts for 50%
of errors in the 10-cM scan and for 25% in the fine-
scale–mapping marker set. Ewen et al. (2000) report that
the remaining 15%–20% of errors in their lab were due
to sample swaps or mishandling.

Genome-screen data can also be informative for im-
putation of relationships, by demonstrating both the
overall amount of genetic sharing and the patterns of
sharing along chromosomes. Several investigators have
developed methods for using such data to identify ped-
igree errors in the absence of genotyping error. Göring
and Ott (1997) and Boehnke and Cox (1997) indepen-
dently developed methods for computing, on the basis
of genetic marker data on the pair, the likelihoods of
sib, half-sib, and unrelated relationships between pairs
of individuals. Both of these methods assume that geno-
types are known without error. Göring and Ott (1997)
take a Bayesian approach to the problem by calculating
posterior probabilities of alternate relationships; they
also account for parental genotypes when data on one
parent are present, by calculating the relationship like-
lihood conditional on the parental genotype. Boehnke
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Table 1

Relationships Considered in the Present Study

Relationship
No. of Distinct

Orderingsa

Full sibs 1
Half-sibs (one common parent)b 1
MZ twins (repeated samples) 1
Unrelated individuals 1
Half-sibs (two different parents)b 3
Two full sibs � half-sib 3
Two full sibs � unrelated individual 3
MZ twins � sib 3
MZ twins � half-sib 3
MZ twins � unrelated 3
Two half-sibs � unrelated individual 3

a For several of the relationships, there are three dis-
tinct ways to specify the relationship among three ordered
individuals.

b Shown in figure 1.

and Cox (1997) take a likelihood-ratio approach by
comparing the likelihoods. These likelihoods and pos-
terior probabilities are calculated by assuming a hidden
Markov model (HMM) for the identity-by-descent
(IBD) process, for full sibs, half-sibs, MZ twins, and
unrelated individuals.

Markov-chain methods have more recently been de-
veloped for the evaluation of additional types of rela-
tionships, including parent-offspring, grandparent-
grandchild, first-cousin pairs, and avuncular pairs
(McPeek and Sun 2000; Epstein et al. 2000). These ad-
ditional relationships are useful for more-extended ped-
igrees, especially when not all individuals are genotyped.
Epstein et al. (2000) approximate the likelihoods of the
first-cousin and avuncular relationships, in which the IBD
process is not Markov. For these cases, McPeek and Sun
(2000) compute the exact likelihoods by constructing an
augmented Markov chain and marginalizing over the
IBD states of intermediate individuals.

Broman and Weber (1998) point out that likelihood
calculations can be extended to allow for genotyping
error. Including a genotyping-error model can improve
the relationship inference when genotyping error is pres-
ent. Additionally, calculating the posterior probability
of the observed data for each marker can show at which
markers a genotyping error is likely to have occurred.
Broman (1999) applied methods that incorporate the
possibility of error to the Genetic Analysis Workshop
11 data, using a simple error model, which assumes
independence between the observed phenotype and true
genotype, conditional on the existence of an error. Sim-
ilar methods have been implemented by Douglas et al.
(2000) and Epstein et al. (2000). Kumm et al. (1999)
devised a more general error model, which allows the
observed phenotype to depend on the true genotype,
which is more appropriate than assuming that there is
independence between the two.

In each of these approaches, individuals have been
compared pairwise. In many genetic studies, both in sib-
pair studies and in linkage studies on pedigrees, sibships
of larger sizes are collected. Browning and Thompson
(1999) point out that comparing three related individ-
uals can yield information that three pairwise compar-
isons cannot. Addition of a third, related individual can
increase the power to infer relationships correctly.
Jointly examining three full sibs can identify Mendelian
errors that otherwise may be missed. Some genotype
errors, which do not cause Mendelian inconsistency,
may also be more apparent when three siblings are con-
sidered, because the reported genotypes require addi-
tional recombinations to explain the observed data.

Here we extend the previously developed HMMs to
analysis of three individuals jointly, considering rela-
tionships that are combinations of full sibs, half-sibs,
MZ twins, and unrelated individuals. We allow a more

general error model, to infer relationships in the pres-
ence of genotyping error and to identify those loci at
which errors have occurred. We apply these methods to
two sets of genome-screen data to demonstrate their
usefulness. The methods developed have been imple-
mented in ECLIPSE (Error Correcting Likelihoods in
Pedigree Structure Estimation), a C�� program that
computes the likelihoods (probabilities of the data) and
the posterior probability of genotypes at each locus, for
a variety of relationships. The source code for this pro-
gram can be downloaded from the PANGAEA web site
(see the Electronic-Database Information section).

Methods

Among an ordered trio of individuals, we consider re-
lationships that are feasible combinations of the follow-
ing pairwise relationships: full sibs, half-sibs, MZ twins,
and unrelated individuals. This results in 25 possible
relationships among the three ordered individuals, which
are listed in table 1. The simplest of these relationships
are three full sibs, three MZ individuals (repeated sam-
ples), and three unrelated individuals. When ordering is
taken into account, there are four distinct ways to specify
three half-sibs (fig. 1): the first case occurs when all three
individuals share one common parent; the remaining
three cases occur when one individual shares his mother
with either of the other two individuals and shares his
father with the remaining individual. When we cannot
distinguish between maternal and paternal sharing, this
results in three possible relationships of this form. The
remaining 18 relationships are six combinations of the
four pairwise relationships, each giving rise to three con-
figurations of the relationship; for example, there are
three ways to designate a pair of full sibs with a half-
sib, because there are three possibilities with regard to
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Figure 1 Four possible half-sib relationships. The pedigree in
the lower-right quadrant shows three half-sibs with a common parent
(i.e., the second relationship in table 1); each of the remaining three
pedigrees shows three half-sibs with two different parents (i.e., the
fifth relationship in table 1). Note that we need define only three cases
when one individual shares his mother with one individual and shares
his father with the other. This simplification can be made because we
cannot distinguish between maternal and paternal sharing, and we
assume a sex-averaged map.

which individual is the half-sib. Similar arguments hold
for the remaining five relationships: a pair of full sibs
with an unrelated individual, a pair of MZ twins with
a full sib, a pair of MZ twins with a half-sib, a pair of
MZ twins with an unrelated individual, and a pair of
half-sibs with an unrelated individual.

For the types of relationships considered, we measure
IBD relative to the previous generation; that is, for each
pair of individuals we indicate whether they share their
maternal and paternal alleles. The IBD states among
three individuals are represented as a pair of IBD states:
one describing the maternal sharing and one describing
the paternal sharing. There are five patterns of maternal
IBD sharing among the three individuals. These consist
of the pattern in which all three individuals share their
maternal allele ( ), the pattern in which only the firstm123

and second individuals share their maternal allele
( ), the pattern in which the first and third individualsm12

share their maternal allele ( ), the pattern in whichm13

the second and third individuals share their maternal
allele ( ), and the pattern in which none of the in-m23

dividuals share their maternal allele ( ). For full sibs,m0

only the first four maternal IBD states are possible, since
there are only two choices for the allele transmitted to
an offspring. We can define the five paternal IBD states
( , , , , and ) analogously. Combining thep p p p p123 12 13 23 0

maternal and paternal IBD states gives us 25 possible
IBD states that describe both maternal and paternal
sharing.

Now we define some notation. Let Y p (Y , … ,Y )1 M

be the observed phenotypes at M markers for the three
ordered individuals; thus, for each marker m, con-Ym

sists of the genotypes of all three individuals. We allow

for genotyping error by distinguishing the marker phe-
notypes from the true single-locus genotypes X p

. Finally, let be the complete(X , … ,X ) I p (I , … ,I )1 M 1 M

IBD states at the M markers. We will assume throughout
that the allele frequencies at each marker, as well as the
marker map, are known without error. If we assume
that there is no genetic interference, the IBD states
among individuals in the relationships described are
Markov along the chromosome; that is, the IBD state
at marker m, , given the IBD states at all the otherIm

markers, , depends only on the(I , … ,I ,I , … ,I )1 m�1 m�1 M

states IBD at the neighboring loci, and . UsingI Im�1 m�1

this assumption we can model our data with an HMM,
in which the Markov IBD process, , cannot be observedI
directly but in which the observed phenotypes, , areYm

a degradation of the underlying genotypes, , whoseXm

probability is determined by . The dependence amongIm

the observed and latent variables is shown in figure 2.
Using this HMM, we wish to calculate , theP (Y)R

probability of the data, , for each particular relation-Y
ship, R. These quantities will be used to compare the
likelihoods of the different relationships. We will also
calculate , the posterior probabilities of the IBDP (I FY)R m

states, , given the observed phenotypes. These prob-Im

abilities are necessary for calculation of the posterior
probability of genotyping error at each locus. To cal-
culate these probabilities, we need, first, to calculate the
transition probabilities, , for the Markov pro-P (I FI )R m m�1

cess of IBD states along the chromosome. These tran-
sition probabilities are dependent on the relationship
among the individuals and are a function of , thevm�1

recombination frequency between marker andm � 1
marker m. Furthermore, they are the product of the
transition probabilities for the maternal and paternal
IBD process, since these processes are independent. Ta-
ble 2 describes the maternal transition probabilities for
three individuals with the same mother. For the pur-
poses of presentation, we do not distinguish between
male and female maps.

The Baum algorithms (Baum et al. 1970) for HMMs
also require the calculation of , the probabilityP(Y FI )m m

of the observed phenotype at locus m, given the un-
derlying IBD state. This probability is calculated by
marginalizing over all possible true genotypes, :Xm

P(Y FI ) p P(Y FX p j)P(X p jFI ) . (1)�m m m m m m
j�genotypes

The probability of the true genotypes, given the IBD
state, , is calculated under the assumptionP(X p jFI )m m

that there are Hardy-Weinberg genotypic proportions
in the population (Thompson 1974). The probability of
the phenotype, given the genotype, , is definedP(Y FX )m m

by the assumed error model, which is described in detail
below.

To calculate , we use the Baum algorithm for-P (Y)R
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Table 2

Maternal Transition-Probability Matrix for IBD States among Three
Individuals with the Same Mother

m123 m12 m13 m23 m0

m123
3 3v � (1 � v) v(1 � v) v(1 � v) v(1 � v) 0

m12 v(1 � v) 3 3v � (1 � v) v(1 � v) v(1 � v) 0
m13 v(1 � v) v(1 � v) 3 3v � (1 � v) v(1 � v) 0
m23 v(1 � v) v(1 � v) v(1 � v) 3 3v � (1 � v) 0
m0 0 0 0 0 1

Figure 2 Dependence structure for HMM. The transition probabilities, , are functions of the recombination rates, . TheP (I FI ) vR m m�1 m

probability of the genotype, given the IBD state, , is a function of the allele frequencies, . The probability of the phenotype,P(X FI p j) pm m m

given the genotype, depends on the assumed error model. Here we assume prior probability of genotyping error e.

ward along the chromosome (Baum 1972). Define
, the probability of thea (jFR) p P (Y , … ,Y ,I p j)m R 1 m�1 m

data for the first markers and the IBD state atm � 1
marker m, . Given , the prior probabilityI p j a (jFR)m 1

of IBD state j for relationship R, the proceeding values
may be computed sequentially:

a (kFR) p P (I p kFI p j)�m�1 R m�1 m
j�IBD

#P(Y FI p j)a (jFR) .m m m

Finally, the probability of the data under for a particular
relationship, , can be found:P (Y) P (Y) pR R

. The likelihoods of different� P(Y FI p j)a (jFR)j�IBD M M M

relationships are then compared.
To calculate , we also proceed sequentially,P (I FY)R m

this time backward along the chromosome. Let
be the posterior probability ofb (jFR) p P (I p jFY)m R m

IBD state j at marker m, for a specified relationship;
then, is a function of , as follows:b (kFR) b (jFR)m�1 m

b (kFR) p P (I p kFI p j,Y , … ,Y )b (jFR)�m�1 R m�1 m 1 m�1 m
j�IBD

p a (kFR)P(Y FI p k)m�1 m�1 m�1

b (jFR)m# P (I p jFI p k) .� R m m�1
a (jFR)j�IBD m

(2)

These posterior IBD-state probabilities are used in cal-
culation of the posterior probability of error for a par-
ticular relationship and error model. Note that, whereas

depends only on , depends on the fulla Y , … ,Y bm 1 m�1 m

data .Y

When trios of individuals are considered, it is im-
portant to model genotyping errors, if there is a pos-
sibility that they exist. Failure to do so can result in
incorrect inference about the underlying relationship. In
particular, there are trios of genotypes that cannot occur
among full siblings. Full siblings have a maximum of
four distinct alleles (two maternal and two paternal)
among them. Additionally, at least one pair of siblings
must share their maternal allele and one pair must share
their paternal allele; so, for example, the genotypes
{(a,a),(a,b),(c,d)} and {(a,b),(a, c),(a,d)} cannot occur in
a trio of full sibs when the alleles a, b, c, and d are
unique.

Calculation of can be quite computationallyP(Y FI )m m

intensive, since it requires summation over all possible
ordered three-individual genotypes, as in equation (1).
At a marker with N alleles, this is a sum over {[N(N �

genotypes, a value that becomes quite large for31)]/2}
multiallelic markers; for example, a marker with 10 al-
leles requires a sum over 1166,000 genotypes, and a
marker with 15 alleles requires 1,728,000 genotypes.
Since here we focus on multiallelic microsatellite markers,
we constrain the error model to limit the number of terms
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in the sum and to make the computations feasible. For
single-nucleotide polymorphisms (SNPs) or other mark-
ers with few alleles, these constraints can be relaxed. For
multiallelic markers, we assume that, at any particular
locus, only one error per individual may occur; that is,
at least one allele per locus is typed correctly per indi-
vidual. Additionally, we assume that genotyping errors
in individuals occur independently over loci and over
individuals, so that . For3 (i) (i)P(Y FX ) p � P(Y FX )m m ip1 m m

each individual, we assume that the genotype is correct,
with probability , where e is a specified genotyping-1 � e

error rate. Furthermore, we let all single-allele mutations
occur with equal probability. For an individual whose
true genotype is homozygous (a,a), the observed phe-
notype is (a,b), with probability , for a and be/(N � 1)
unique alleles. For a heterozygous (a,b) individual, the
observed phenotype is (a,c), with probability e/[2(N �

, and is (b,d), with the same probability, for a and b1)]
unique, c different from b, and d different from a. Com-
mon typing errors that we particularly want to consider
are the loss of one allele, usually due to either amplifi-
cation failure during a PCR reaction or misreading of a
single allele as another allele of similar size (Ewen et al.
2000). Although our error model is somewhat restrictive,
it encompasses these common errors and allows for de-
pendence of the observed phenotype and true genotype.

Under a given error model, we can now compute the
posterior probability of latent genotypes—and, thus, of
any specific typing errors at a locus in an individual or
an allele. Here we focus on only the total probability,
at each locus, of a typing error. In practice this is prob-
ably the most useful summary measure on which to base
a decision either to ignore the data at this locus or to
incur the cost of having the individuals retyped. Let

denote the probability of the observed phe-P(Y FI )e m m

notype, given the underlying IBD state (which is cal-
culated in eq. [1]), under the specified error model de-
scribed above, with prior genotyping-error probability
e. Let be the resulting posterior probability ofb (jFR,e)m

IBD state j for relationship R, as calculated in equation
(2). Then, the posterior probability that the observed
phenotype is the correct genotype is

P(X p Y FY,R)e m m

p b (jFR,e)P(X p Y FI p j,Y,e)� m m m m
j�IBD

P (Y FI p j)ep0 m m3p (1 � e) b (jFR,e) ,� m P(Y FI p j)j�IBD e m m

since p /P(YmFP(X FI p j,Y) P(Y FX )P(X FI p j)m m m m m m

Im p j).

Results

To demonstrate the usefulness, over pairwise analysis,
of analysis of trios of individuals, we here apply these
methods to two different data sets. First we examine
some examples from the COGA (Collaborative Study
on the Genetics of Alcoholism) data set (Begleiter et al.
1995), to explore the accuracy of the inferred relation-
ship when we have a relatively “clean” data set. The
COGA data set has been well analyzed previously and
is thus clean in the sense that genotypes at each locus
are consistent with the reported relationships. The data
consist of genotypes at 285 autosomal markers, with an
average intermarker distance of ∼13 cM. For these data,
we assume that observed marker genotypes are known
without error; that is, we set e, the prior probability of
genotyping error, to 0. In this case, we examine putative
full sibs and putative half-sibs. The second data set, li-
poprotein pathophysiology grant (LPPG) (Goldstein et
al. 1973), involves a pedigree from a long-standing study
of cardiovascular disease for which marker genotypes
for a genome scan have recently been produced. This
data set may be more typical of the data initially col-
lected in a study, since data errors have not yet been
removed. The data consist of genotypes at 312 auto-
somal markers on 21 chromosomes, with an average
intermarker distance of ∼10 cM. In this case, we examine
how the modeling of genotyping error aids us in inferring
the relationships among individuals.

The first example shows that, by including a third
individual in the analysis, we are able to differentiate
between possible relationships that are difficult to dis-
tinguish in a pairwise comparison. We first examine a
pair of individuals, here denoted “A” and “B,” from
the COGA data, whose reported relationship is that of
half-sibs. We examine the first 100 markers, which are
the markers on the first five chromosomes. Incorporat-
ing the data at these 100 markers (79 of which are typed
for both A and B), we find that the data are not infor-
mative as to whether the pair of individuals are full sibs
or half-sibs. The calculated log-likelihood difference be-
tween the two relationships is 0 (fig. 3A). We can in-
crease our power to detect the true relationship by con-
sidering a third individual, C, who is a reported full sib
to individual B. A pairwise analysis shows that the
marker data support the reported relationship between
B and C, with a log10-likelihood difference, between the
full-sib and half-sib hypotheses, of ∼18. Among these
three individuals, there are 75 markers at which all three
individuals are typed, and there are 22 markers at which
one of the three genotypes is missing.

Considering jointly the data from the three individ-
uals, we find that the relationship is most likely that of
individual A as a half-sib to both B and C, who are full
sibs. The log-likelihood difference between this rela-
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Figure 3 Cumulative log10-likelihood differences between relationships for (A) individuals A and B, who are reported half-sibs, and (B)
individuals A–C, of whom B and C are full sibs and A and B are half-sibs. For simplicity in panel B, only the curves corresponding to the 2
most likely relationships have been labeled; the unbroken curves correspond to the 11 remaining relationships that have positive likelihoods.
The relationships of three full sibs and those involving MZ twins have likelihoods of 0. Each difference is relative to the reported relationship.
In each case, the prior probability of genotyping error is assumed to be 0.

tionship and the next-most-likely relationship, with A
and B as full sibs and with C as a half-sib, is just over
9 (fig. 3B). Also, if we do not allow for genotyping error,
we can immediately exclude 11 relationships, including
that of three full sibs, because of five loci that have
genotypes inconsistent with the relationship of full sibs.
If we allow a prior genotyping-error probability of

, the reported relationship (i.e., B and C as fulle p 0.02
sibs with a half-sib, A) is still most likely, with the re-
lationship of three full sibs being the next most likely.
Here, the log-likelihood difference is 15. The plots of
the log-likelihood differences based on the cumulative
data over increasing numbers of loci (fig. 3) show that,
for the pairwise analysis of individuals A and B, the
likelihood of the relationship of full sibs and the like-
lihood of the relationship of half-sibs remain fairly sim-
ilar to each other, regardless of how many markers are
considered (fig. 3A). However, when we include the
third individual in the analysis, the likelihood of the
reported relationship becomes well differentiated from
the likelihoods of the remaining relationships, after we
include the first 70 markers (fig. 3B).

Using an example involving full siblings from the
COGA data, we show that inclusion of an extra sibling
reduces the number of markers required for accurate
inference of the relationship and increases the certainty
with which we infer the relationship. The involved in-

dividuals are from the same family as in the previous
example. This time, we include data from all 285 mark-
ers for individuals whom we denote “D” and “E.” Of
the 285 markers, 99 are typed for both individuals. In
this case, the calculated log-likelihood difference be-
tween the full-sib and half-sib hypotheses is 0.745; how-
ever, examining the cumulative log likelihoods in fig.
4A, we find that the relationship of half-sibs is more
likely until we include the 208th marker. At some loci,
the cumulative log-likelihood difference is 11.9 in favor
of the half-sib relationship. Now we include a third
individual, denoted “F,” who is reportedly a full sibling
to both D and E. Considering D–F jointly, we find that
there are 83 markers at which all three individuals are
typed and 114 markers at which two of the three in-
dividuals are typed. The log-likelihood difference be-
tween the three-full-sibs relationship and the second-
most-likely relationship, in which E is a half-sib to both
F and D, is 14.88. Examining the cumulative log-like-
lihood differences (fig. 4B), we find that the reported
relationship becomes the most likely (resulting in neg-
ative log-likelihood differences) after ∼125 markers.
Thus, by including the third sibling, we improve our
ability to infer the underlying relationship.

We now turn our attention to an example in which
the data may not be free of genotyping error. We would
first like to be able to infer the correct relationship among
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Figure 4 Cumulative log10-likelihood differences between relationships for (A) individuals D and E, who are reported to be full sibs, and
(B) individuals D–F, all three of whom are reported to be full sibs. For simplicity in panel B, only the curve corresponding the to most likely
relationship is labeled; the unbroken curves correspond to the 13 remaining relationships that have positive likelihood. Each relationship with
MZ twins has a likelihood of 0. Each difference is relative to the reported relationship. In each case, the prior probability of genotyping error
is assumed to be 0.

Figure 5 LPPG pedigree. Identifications have been changed to
protect confidentiality.

the individuals, and, second, we would like to find prob-
able genotyping errors. The pedigree in this example is
shown in figure 5 and is part of a much larger pedigree
described by Goldstein et al. (1973). To maintain the
confidentiality of the subjects involved, identification and
sex of the individuals may have been changed. The results
are summarized in table 3. Throughout this example, we
report likelihoods for . However, the same con-e p 0.02
clusions are drawn for e in the range of 0.001–0.04 (data
not shown). An initial pairwise comparison indicated that
individual 3 was more likely a half-sib to each of its two
putative siblings. A joint comparison of individuals 1–3
confirmed this result, with a log likelihood 36.3 larger
than that of the second-most-likely hypothesis, that of
individuals 1 and 3 as full sibs and individual 2 as a half-
sib, when the prior probability of genotyping error is

. The analysis indicated 42 markers at whiche p 0.02
the genotype was incompatible with the relationship of
full sibs. When we compare individuals 1, 2, and 4 jointly,
the most likely relationship is that of three full sibs, when
we allow a positive probability of genotyping error. For
error-free genotypes, the likelihood for the relationship
of full sibs is 0. With , the second-most-likelye p 0.02
relationship is that individuals 1 and 4 are full sibs and
that individual 2 is their half-sib. The resulting log-like-
lihood difference is 62.8. The analysis indicates one

marker at which the genotypes are incompatible with the
full-sib relationship. Additionally, there are three other
markers at which the posterior probability of error under
the full-sib model is 150%. However, if we ignore the
single locus with data incompatible with the relationship
of full sibs and analyze the resulting data without allow-
ing for genotyping error, the log-likelihood difference is
64.0 in favor of the relationship of full sibs. Since indi-
viduals 3 and 4 are consistent with the reported parent-
offspring relationship, we conclude that there must have
been a sample swap between individuals 3 and 4. Not
only can we infer the correct relationships by means of
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Table 3

Summary of Results for the LPPG Example, Shown in Figure 5

Individuals Considered Individuals 1–3 Individuals 1, 2, and 4

Reported relationship Full sibs Two sibs (1,2) � niece (4)
Most likely relationship Two sibs (1,2) � half-sib (3) Three full sibs
Second-most-likely relationship Two full sibs (1,3) � half-sib (2) Two sibs (1,4) � half-sib (2)
Log-likelihood differencea 36.3 62.8
No. of Mendelian errorsb 42 1

a Between the most likely relationship and the next-most-likely relationships, when the prior prob-
ability of genotyping error is .e p 0.02

b Under the full-sib hypothesis.

Table 4

Posterior Probability of Error at Marker 14

GENOTYPE OF

INDIVIDUAL Ha

POSTERIOR PROBABILITY OF

ERROR AT MARKER 14, FORb

G and H H and K G and K G, H, and K

( , )a a1 1 .002 .404 .402 .451
( , )a a1 2 .252 .249 .402 .324
( , )a a2 2 .408 .002 .402 .091

a Frequencies of the and alleles are 0.1047 and 0.0128,a a1 2

respectively.
b Individual G has genotype ( , ), and individual K has genotypea a1 1

( , ). Results shown are based on marker data on 20 markers ona a2 2

chromosome 1, when the prior probability of genotyping error is
.e p 0.02

this analysis, but we also have indicated with certainty
one genotyping error.

In some instances, we can find loci at which the phe-
notype is incompatible with the reported (or most likely)
relationship; however, in other cases, the posterior prob-
ability of error indicates loci at which the probability
of error is high under the error model. Our final example
explores the sensitivity, to allele frequency, of the pos-
terior probability of error. Returning to the COGA data,
we examine individuals G, H, and K, who are putative
full sibs, using only the data on chromosome 1, which
has 20 typed markers. Even when we allow no geno-
typing error, the data are considerably more probable
under the full-sibs model, with a log10 likelihood that
is ∼2.77 larger than that of the next-most-likely rela-
tionship model. However, when we allow the model to
have a prior probability of genotyping error of e p

, we find that the posterior probability of error at0.02
marker 14 under the full-sibs model is quite high, 0.407.
In comparison, at the remaining loci the posterior prob-
ability of error is 0.159 at marker 10 and is !0.063 at
the remaining loci. Examining the genotypes at marker
14, we find that individual H is untyped, whereas in-
dividuals G and K are each homozygous for different
alleles, and , with allele frequencies 0.1047 anda a1 2

0.0128, respectively; in other words, individual K is
homozygous for a relatively rare allele, whereas indi-
vidual G is homozygous for a more common allele.
Thus, we may be inclined to believe that there is an
error in the genotype of individual K, since, if we assume
that his genotype is correct, then both his parents must
carry a rare allele.

We now examine the posterior probability of error
at marker 14, for the three genotypes for individual H
that are consistent with the reported relationship of full
sibs. These results are shown in table 4. Since we do
not alter the genotypes of individuals G and K at marker
14, the parents still must be heterozygous for alleles

and . Despite this fact, the assumed error modela a1 2

causes the posterior probability of error to be quite dif-
ferent for the three different genotypes of individual H.
For analysis of trios, the error probability appears to

be sensitive to the situation when one individual is ho-
mozygous for a rare allele. The posterior probability of
error is particularly high when none of the other typed
individuals carries that allele (table 4). Pairwise analysis
does not appear to be as sensitive to allele frequency;
for example, allele frequencies have little effect on pos-
terior probability of error when two sibs who are ho-
mozygous for the same allele are analyzed (see the prob-
ability, 0.002, in table 4.) Similarly, when individual H
is heterozygous ( , ) and is compared to individuala a1 2

G, who is homozygous for the more common allele, or
to individual K, who is homozygous for the rare allele,
the posterior probability of error is similar (0.252 and
0.249, respectively). This posterior probability of error
at a locus depends, of course, on the relative probability
of the data, both when there is error and when there is
not error, as well as on the data at linked markers.
Whether the homozygous sib is so for a common or
rare allele has a large effect on the absolute probability
of the data but has very little effect on the relative prob-
ability either with or without error. However, there is
a large effect on the specific error inferred. For individ-
uals H and K, the likely error is in one allele of the rare
homozygote, individual K. For individuals G and H, the
likely error is in the rare allele in the heterozygote, in-
dividual H.
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The methods that we employ assume that allele fre-
quencies, recombination rates, and genotyping-error
rate are known. In practice, these quantities are esti-
mated and are, therefore, subject to errors themselves.
The previous example demonstrates that the posterior
probability of error for trios is affected by the allele
frequencies. However, although the likelihoods change
slightly, the inferred relationship is unchanged with
changes to the genotype of individual H (data not
shown). Because these methods incorporate data from
all markers jointly, an accurate map is important. How-
ever, for moderately spaced maps these methods are
reasonably robust; for example, although the reordering
of 23 widely spaced pairs of adjacent markers in the
LPPG map changed the posterior probabilities of error
at the reordered loci, it did not change the inferred re-
lationships (data not shown). For only a few markers
were the changes in posterior probability of error sub-
stantial, presumably because of apparent excess recom-
bination caused by the change in marker order. The
posterior probabilities of error, as well as the likeli-
hoods, are also affected by the assumed error rate. In
our analyses, we have reported results for an assumed
error rate of 2%; however, we have verified that the
results are qualitatively unchanged within the range of
0.1%–4%, which spans most error estimates for mi-
crosatellite markers. In practice, a sensitivity analysis
may be desirable to determine the robustness of results
to changes in allele frequencies, recombination fre-
quencies, and/or error rates.

Not surprisingly, analysis of trios is more computa-
tionally complex than analysis of pairs. An analysis of
a trio of individuals typed at 312 markers took 15.25
min for five different prior probabilities of genotyping
error. The three pairwise analyses of the same individ-
uals and with the same prior probabilities of genotyping
error took 5.7 min. However, the majority of the com-
putational complexity is caused by inclusion of the error
model; without the genotyping-error model, 7.42 s were
required for analysis of the same three individuals
jointly. Note that, since the Baum algorithm is linear in
the number of loci, these methods can easily be scaled
to larger numbers of loci.

Discussion

Collection of genetic data may never be error free. False
paternity, unrevealed adoptions, and mistakes by inves-
tigators can cause relationship misspecification in ped-
igrees. Genotyping methods, although increasing in ac-
curacy, may never be perfect and will never be able to
eliminate mutations. These errors can cause serious con-
sequences in linkage studies. Therefore, data-analysis
methods to minimize these errors are crucial. The cou-
pling of typing-error detection and relationship valida-

tion can be an effective approach to both types of errors.
Additionally, allowing for genotyping errors is crucial
when one is validating relationships among three (or
more) individuals jointly, since typing error can result in
genotypes that are incompatible with the true relation-
ship. Therefore, an adequate error model is very im-
portant. When Mendelian incompatibilities exist in the
case of full sibs, this coupling of error detection and
relationship validation can help us to distinguish be-
tween full sibs, among whom typing error has occurred,
and more distant relationships. This has been demon-
strated by the LPPG example.

A genotyping-error model must be computationally
feasible and must adequately reflect the types of errors
that occur in practice. Previous approaches to modeling
error (Broman and Weber 1998; Broman 1999; Douglas
et al. 2000; Epstein et al. 2000) have assumed inde-
pendence between phenotype and genotype, conditional
on the existence of an error. This model has the advan-
tage of computational simplicity, but the assumption of
independence is not accurate. Additionally, the model
becomes more unrealistic when applied to trios of in-
dividuals. A more desirable approach is to allow for
dependence between the phenotype and the true geno-
type, because, in practice, the two tend to be closely
related. We introduce a framework in which a more
general error may be implemented. Because we have
used microsatellite markers with large numbers of al-
leles, we have implemented a simplified error model that
allows for this dependence while maintaining compu-
tational feasibility, even when examining larger num-
bers of individuals jointly. By limiting the number of
alleles at which an error has occurred to one per indi-
vidual, we reduce the calculation of to a sumP(Y FI )m m

on the order of , where is the number of alleleskN Nm m

at the locus and k is the number of individuals. A more
general model that allows errors at both alleles would
require a sum on the order of , which gets quite2kNm

large for multiallelic markers. Employing our simplified
model, we can routinely handle markers with 120 al-
leles, which would be impossible for a more general
model when trios of individuals are being compared.
Our model adequately handles most errors for mod-
erately spaced markers and permits feasible true geno-
types for all but the most unlikely errors—for example,
a trio of MZ twins (repeated samples) among whom
four or more alleles are mistyped. Further investigation
is needed to compare the performance and computa-
tional feasibility of this and other error models. For SNP
data or microsatellites with few alleles, more-general
models are computationally feasible. Investigators could
weight certain types of errors more highly or even spec-
ify different error rates for each allele.

Joint analysis of trios gives more information than
does analysis of pairs. This has been demonstrated, in
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the context of relationship validation both for half-sibs
and for full sibs, by two different examples from the
COGA data. Analysis of trios requires fewer markers
and more clearly distinguishes relationships than does
analysis of pairs. Analysis of trios is also helpful in
detection of genotyping error. Mendelian errors can be
detected by examination of three siblings jointly. Even
when genotypes are compatible with the reported re-
lationship, joint analysis of trios can give a very different
posterior probability of error than is given by three pair-
wise analyses. This is demonstrated by the results in
table 4. Two of the possible genotypes for individual H
give a similar pattern of posterior probabilities of error
in the pairwise analyses (in two of them, the posterior
probability of error is ∼0.4; in the third, it is 0.002),
but the two corresponding joint analyses of trios yield
quite different results.

Joint analysis of trios can improve the quality of con-
clusions drawn with regard to genetic errors. In many
studies, data on a third related individual are either
available or easily collected. In the case of sib-pair stud-
ies, extra affected or unaffected sibs are often available.
Current sib-pair studies are more often including in-
formation from discordant sib pairs, so extra unaffected
sibs are starting to be collected whenever possible. Es-
pecially in the absence of parental data, extra siblings
can often be informative, not only in detection of errors
but also for the linkage study itself. These methods can
also be helpful in pedigree-based linkage studies when
parental data are missing; in these cases, larger sibships
are routinely collected.

In principle, this approach can be extended to more-
distant relationships and to joint analysis of larger num-
bers of individuals. McPeek and Sun (2000) and Ep-
stein et al. (2000) have found that pairwise analysis
cannot easily distinguish between half-sibs, grandpar-
ent-grandchild, and avuncular relationships. Brown-
ing and Thompson (1999) have shown that joint anal-
ysis of three individuals can distinguish between two
sibs with a niece and two sibs with an aunt. Thus,
extension of joint analysis to more-distant relationships
may be quite useful. Although joint analysis can be ex-
tended to four or more individuals, the added compu-
tational complexity would be prohibitive for high-
throughput installation.

In conclusion, the coupling of relationship validation
and genotyping-error detection for trios of individuals
can be quite useful. When larger sibships are available,
this approach is preferable to pairwise analyses, because
errors are more easily detected. The HMM of the un-
derlying maternal and paternal IBD processes allows for
easy extension to sex-specific maps. The assumed error
model both is computationally feasible and models the
more common genotyping errors. When other related
individuals are available, joint analysis of trios may, at

the very least, be applied to individuals and markers
that are flagged by pairwise analysis. However, since
joint analysis of trios can identify Mendelian inconsis-
tencies, these methods may be applied to all sibships of
three or more individuals. To reduce the amount of
computation required, this analysis can be done first
without the error model, to identify sibships with Men-
delian inconsistencies or low likelihoods; then these sib-
ships should be analyzed with the error model, to iden-
tify the loci at which errors have occurred.
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